

The Project:

Public Interactive Installation to Demystify Sensors and “SMART” Technology.

By Edward Clarence Deaver, IV

For the City of Syracuse Innovation Team

Project Advisor: Dr. Voorhees

Project Manager: Sam Edelstein

Table Of Contents:

Definitions 4

Project Plan 6

Spiral Stages: Planning 8

Spiral Stages: Lighting 9

Spiral Stages: External Data Input 10

Spiral Stages: Real Clear Information 11

Spiral Stages: Audio 12

Spiral Stages: Networking 13

Spiral Stages: Website 15

Spiral Stages: Installation 16

Design Document 17

Requirements 18

Design Rationale 19

How does this convey an understanding of #SmartNotMagic 20

Dependencies 21

Localhost software dependencies: 21

Localhost hardware dependencies: 21

Development package depencies: 21

Node JS Webserver dependencies: 21

System Architecture (Hardware) 22

System Architecture (Hardware-wiring) 23

System Architecture (Software - Data High Level Overview) 24

System Architecture (Software - OpenFrameworks Update Function) 25

System Architecture (Software - Python UDP Server) 26

System Architecture (Software - NodeJS WebServer) 28

Network Architecture (Dataflow) 30

Network Architecture (Messages) 31

Folder Structure (Openframeworks) 32

Folder Structure (Python) 33

Folder Structure (NodeJS) 34

File Descriptions 35

Function Descriptions 36

FILE: ofxOPC.cpp (Modified) 41

FILE: UDPServer.py 42

FILE: index.js 43

Testing 44

Real Clear Information Definitions 50

Definitions

Term/Acronym Definition

Transparency “How something is open enough to allow things to be deeply

observed from different perspectives.”1

Processing (Java -

framework)

A Java framework “built for the electronic arts, new media art, and

visual design communities”2

OpenFrameworks

(C++ - Framework)

“About.” openFrameworks, November 30, 2019.

https://openframeworks.cc/about/.

NodeJS JavaScript based server that is designed for async behavior by

default.

Express Minimalist web framework.3 Flask is to Python, as Express is to

Node.

Socket IO Library built on top of web sockets to make working with them

easier.

FadeCandy Server A server package to accept commands for the Fade Candy.

FadeCandy A USB Teensy based interface between a computer and NeoPixel

strips.4

OPC Open Pixel Control protocol is an open-source protocol to control

LEDs. The FadeCandy server accepts messages formatted into this

structure.

Adafruit HUZZAH

ESP8266

An Arduino like device that is based on the ESP8266.

Ultrasonic Distance

Sensor

This is an ultrasonic sensor that allows you to trigger and listen for a

response to obtain distance data.

1 Cysneiros, Luiz Marcio, and Vera Maria Benjamim Werneck. "An Initial Analysis on How Software
Transparency and Trust Influence each other." In WER. 2009.http://www.inf.puc-
rio.br/~wer/WERpapers/artigos/artigos_WER09/cysneiros.pdf
2 “Processing.” Visualising Information for Advocacy. Accessed December 1, 2019.
https://visualisingadvocacy.org/node/725.html.
3 “Node.js Web Application Framework.” Express, December 4, 2019. https://expressjs.com/.
4 Scanlime. “Scanlime/Fadecandy.” GitHub, January 6, 2019. https://github.com/scanlime/fadecandy.

http://www.inf.puc-rio.br/~wer/WERpapers/artigos/artigos_WER09/cysneiros.pdf
http://www.inf.puc-rio.br/~wer/WERpapers/artigos/artigos_WER09/cysneiros.pdf
https://expressjs.com/

Raspberry Pi A mini computer that runs Linux, and has GPIO pins.

Mac Mini Small Apple computer.

Project Plan

The project plan was originally created with the assumption that Twitter or Twilio would be used

in the project. Due to conversations that reevaluated the Twitter strategy Internet based

interactivity was cut in favor of solely using distance sensors (and other physical sensors)

connected to a Raspberry Pi. This subsequently cut the image manipulation part of the previous

project plan as well. Also, Twitter has denied our application. The Raspberry Pi was cut in favor

of using a Mac Mini due to software limitations. The project will only be using 2 distance

sensors.

The project started as of August 24, 2019, with the application to have a Twitter Developer

Account. The Initial Parts stage of tasks started September 2, 2019 and ended September 19th.

The Lighting stage of tasks started September 9, 2019 and ended November 21, 2019. The

External Data Input stage started September 24, 2019 and ended October 21st. Real Clear

Information stage started October 21st and ended November 21, 2019. The Audio stage started

as a last minute add on November 22, 2019 and ended December 6, 2019. The Networking spiral

(a last minute addon) of the project started November 26, 2019 and is currently in progress. The

Networking spiral still needs the AES parts to be implemented and tested. The Website, and

Installation spirals have not been started. As of the midterm OpenFrameworks has replaced

Processing, and a Mac Mini has replaced a Raspberry Pi 4.

The project uses a Trello board for project management:

https://trello.com/invite/b/4cKgckkG/653c713386306cc274f7aca1076d212b/research-project

The Spirals in this document are more up to date than the Trello board.

The code for the project can be found here:

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject

The software that runs on the local machine is in the localhost folder, and the NodeJS files are in

the Heroku folder.

https://trello.com/invite/b/4cKgckkG/653c713386306cc274f7aca1076d212b/research-project
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject

The OpenFrameworks source code is here in ofApp.cpp

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/OpenF

rameworks/apps/myApps/PublicInstallationProject/src

The Arduino source code is here in ReadingInDataFromUltraSonic.ino:

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/Arduin

o/ReadingInDataFromUltraSonic

The Python UDP Server script is here in UDPSERVER.py:

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/Python

The Node JS main file is here in index.js:

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/blob/master/Heroku/NodeJS/i

ndex.js

Trello board color scheme:

● Pink - Software

● Navy Blue - Logistics

● Green - Hardware

● Yellow - Milestone

● Orange - WantsNotNeeds - This is something I would like to happen but it’s not needed

for the core project.

Gantt Chart color scheme:

● Pink - Software

● Purple - Logistics

● Green - Hardware

https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/OpenFrameworks/apps/myApps/PublicInstallationProject/src
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/OpenFrameworks/apps/myApps/PublicInstallationProject/src
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/Arduino/ReadingInDataFromUltraSonic
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/Arduino/ReadingInDataFromUltraSonic
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/tree/master/LocalHost/Python
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/blob/master/Heroku/NodeJS/index.js
https://github.com/EdwardDeaver/SyracuseInnovationLEDProject/blob/master/Heroku/NodeJS/index.js

Spiral Stages: Planning

Objective

To understand the scope of the project and obtain materials to continue with the project.

Activities

These activities are necessary for the project to move forward.

Name Scope

1 Tax Exempt Status Obtain tax exempt status from Adafruit and Amazon.

2 Obtain tools from

Adafruit

Obtain distance sensors, lights and miscellaneous tools.

3 Obtain tools from

Amazon

Obtain Raspberry Pi 4, FadeCandy, and miscellaneous sensors.

4 Revize Trello board. The project is managed in a Trello board, and TeamGhantt.

Spiral Stages: Lighting

Objective

To control the LEDs via hardware input.

Activities

These activities are to create the LED interactivity. This stage overlaps with the GPIO stage.

Name Scope

5 Setup FadeCandy

server

Setup the FadeCandy server and wire the lights to the

FadeCandy.

6 External Data Input to

Graphics to OPC

Create a representation of the LEDs in a grid pattern, and feed

the distance sensor data into the graphics to modify the lights.

7 Animations Solidify animations that are triggered when the distance sensors

input data.

8 Stress testing

 Stress test the graphics capabilities of the Mac Mini.

9 Revise Trello board. The project is managed in a Trello board, and TeamGhantt.

Spiral Stages: External Data Input

Objective

To obtain input from 2 distance sensors and feed them into an OpenFrameworks program.

Activities

These activities are to create the LED interactivity. This stage has been completed.

Name Scope

10 Connect Ultrasonic

Distance Sensor to

ESP8266 Arduino

Successfully read in distance data into Arduino

11 Determine accurate data

collection from sensors

Stress test the number of inputs that the Raspberry Pi can

handle.

12 Determine how to send

data over serial

Should the Arduino program use serial print or serial write.

13 Determine how to read

byte data and convert it

to ASCII in

OpenFrameworks

Successfully read in and convert byte data from the Arduino to

usable data input.

14 Revise Trello board. The project is managed in a Trello board, and TeamGhantt.

Spiral Stages: Real Clear Information

Objective

To explain how the system operates in common vernacular without losing accuracy. There is a high

chance not all these points will be completed by December.

Activities

These activities focus on communications, graphic design and web design.

Name Scope

15 Create clear definitions

of the material parts of

the system

Define each part of the system in clear English.

16 Test definitions on

people.

Ask people with varying levels of technology literacy if they

understand the definitions.

17 Revize Trello board. The project is managed in a Trello board, and TeamGhantt.

Spiral Stages: Audio

Objective

Produce tone for each range of movement.

Activities

These are extra steps not needed for core functionality.

Name Scope

18 Play audio Load an audio file into the program and play it.

19 Control audio panning Create audio for left and right channels.

20 Play audio using

sensor input

Pass sensor data into the audio function to play tones per

category.

21 Testing Does the audio successfully play without clipping?

Do the audio files play for the correct categories?

Do the audio files continue to play after rapid change in input

value?

Spiral Stages: Networking

Objective

Send data of sensors to a web server.

Activities

These are extra steps not needed for core functionality.

Name Scope

22 Create NodeJS

webserver

Create an Express web server that can accept a post request on

glitch.com.

23 Implement input

validation

Validate sensor inputs on NodeJS.

24 Move the project to

Heroku

Move the project to be hosted on Heroku from Glitch.com.

25 Implement SocketIO

server

Create a Socket IO server that will emit data when the post

request is completely validated.

26 Create Socket IO

Client

Create client-side JavaScript to create a socket io connection to

the server.

27 Create valid post

request in Python

Create a proof of concept that can successfully send a post

request using Requests to the NodeJS server.

28 Create a UDP server

in the same Python file

Create a UDP server that can accept connections and send data

to the NodeJS server via a http post request.

29 Use a UDP socket in

OpenFrameworks

Successfully send sensor data to UDP server.

Note: The ofxlibwebsockets library throws architecture errors

when compiling in my openFrameworks app. So, I pivoted.

30 Create a sending data

rate limit

Limit the sending of data from OpenFrameworks to 1 piece of

data sent per 10 seconds.

31 Send data to server Test if the UDP server still sends data to the server.

32 Test Does the system currently end connection if any of the

validation checks are failed?

Does the connection allow non-correct data to be sent to the

client?

Do each of the if statements work?

33 Validate Python UDP

server input

Make sure python server is receiving numbers.

34 Implement AES

encryption on the

Python side

Encrypt the secret key using AES.

35 Implement AES

decrypt / Encrypt on

the NodeJS side

Decrypt the incoming message and test if it matches the stored

key. If not reject connection.

36 Test The security aspect of this part will require continuous testing.

Spiral Stages: Website

Objective

Make a front end website to explain the project

Activities

These are extra steps not needed for core functionality.

Name Scope

37 Client-side validation

of Socket IO

Implement client-side validation of the incoming Socket IO

data.

38 What this project does

section

Create a section that explains why this is important.

39 Why this project exists

section

Create a section that explains why this exists.

40 How this project

works section

Create a section that explains how this works.

Spiral Stages: Installation

Objective

Send data of sensors to server.

Activities

These are necessary for presenting the project.

Name Scope

41 Portable install design How can this be installed on a cart.

42 Print labels for each

part of the project

Print the simple definitions onto labels for each part.

Design Document

Project Overview

The purpose of the project is to demystify smart technology by providing physical interaction for

them. The user will be able to see a clear relationship between physical action and digital

reaction. They will be able to see how sensor inputs effect digital things, the lights.

Requirements

Functional:

1. Control lights using distance sensor data.

2. Distance sensors data controls animations in OpenFrameworks.

3. Power supply should have redundant failsafes.

4. The program needs to stop lights from being set to all white for 5 minutes or more. This

is due to heat (RGB LEDs have individual LEDs per color channel, and to make white all

of them are on at full brightness).

Non-Functional:

1. The performance needs of the system are the ability to not have notable frames per

second drops.

2. The exhibit should be accessible during business hours.

3. All power supplies should be UL rated.

Design Rationale

The application uses the OpenFrameworks GUI interface as the main source of control because it

will provide the easiest form of applying advanced animations to a grid of LEDs by creating

what can be thought of as a low-resolution screen. The FadeCandy is used because it is the

easiest tool to control NeoPixels at scale in a Do-It-Yourself fashion.

How does this convey an understanding of #SmartNotMagic

First it should be understood why citizen’s knowledge of “smart” things is important.

Governments are currently having vendors try to sell them facial recognition software, ways to

monetize citizens data, and artificial intelligence solutions.5 6 This system itself will not produce

a complete understanding of “smart” things by the entire public, but it can provide a jumping off

point to explore ideas. First, the project will try to help the understandings of “smart” through the

use of radical transparency of the system. Radical transparency is a business philosophy based on

total openness.7 It is similar in some respects to the open-source ethos.8 Second, I have created

technology definitions for parts of the system that are defined using the lowest technology

literacy rate of a given area to create simple definitions. Though I do not know how to define

technology literacy rates I have made sure the definitions use metaphors that relate to devices the

reader probably has interacted with. The project relies on two these parts to accomplish the

mission because when transparency increases in a [governmental] system it acts as a multiplier

on preconceived notions of government to reinforce those held ideas.9 10 Researchers at the

Utrecht University Netherlands conducted a study(N=658) to test the link of transparency of

government and trust. The researchers found that due to preexisting ideas of government that

people had the effects of transparency were not prominent in increasing trust.11 12

It is possible to change these preconceived notions. In advertising, agencies have been

doing it for years. Agencies like DoSomething.org and the AdCouncil participate in advocacy or

education related advertising campaigns.13 14 15 At the federal government level there has been

the creation of code.gov to show what open-source projects the federal government has made

and is currently sharing.16

5 Sam, Edelstein. Interview by Edward Deaver. Personal interview. Syracuse,December 3, 2019.
6 ACLU, “How to Stop ‘Smart Cities’ From Becoming ‘Surveillance Cities’”. https://www.aclu.org/blog/privacy-

technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
7 Fishman, Marina. “How to Do Radical Transparency Right as a Manager.” Copper. Copper, August 20,
2019. https://www.copper.com/blog/radical-transparency.
8 “What Is Open Source?” Opensource.com. Accessed December 4, 2019.
https://opensource.com/resources/what-open-source.
9 Grimmelikhuijsen, Stephan. (2012). Linking Transparency, Knowledge and Citizen Trust in Government:
An Experiment. International Review of Administrative Sciences - INT REV ADM SCI. 78. 50-73.
10.1177/0020852311429667.
10 Grimmelikhuijsen, Stephan. (2010). Transparency of Public Decision-Making: Towards Trust in Local
Government?. Policy & Internet. 2. 10.2202/1944-2866.1024.
11 Grimmelikhuijsen (2012).
12 Grimmelikhuijsen (2010).
13 Wolff, Martijn, and W E Biernatzki. “The Social and Cultural Effects of Advertising .” Communication
Research Trends 14, no. 1 (1994): 34–34. http://cscc.scu.edu/trends/v14/V14_1.pdf.
14 “Let's Do This!” Let's Do This! | DoSomething.org. Accessed December 4, 2019.
https://www.dosomething.org/us.
15 “Ad Council.” AdCouncil. Accessed December 4, 2019. https://www.adcouncil.org/.
16 “Code.gov.” Code.gov. Accessed December 4, 2019. https://code.gov/.

https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://www.copper.com/blog/radical-transparency
https://opensource.com/resources/what-open-source
http://cscc.scu.edu/trends/v14/V14_1.pdf

Dependencies

Localhost software dependencies:

1. SiLabs CP210x USB to UART Bridge VCP Drivers for Mac OS.

Use: To be able to read in serial data from the ESP8266.

a. https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-

drivers

2. Fade Candy Server

a. https://github.com/scanlime/fadecandy

3. Python UDP server:

a. Python version 3.

b. Socket (Native Python package)

c. Json (Native Python package)

d. python-dotenv==0.10.3

e. requests==2.22.0

4. Caffeine - an app that forces the Mac computer to never sleep.

Localhost hardware dependencies:

1. 2x ESP8266 3.3v Arduino board.

2. 1x FadeCandy device

3. 4x WS2811 leds 60 per strand. (NeoPixel)

Development package depencies:

1. OpenFrameworks 0.10.1

a. ofxNetwork

b. ofxOPC

i. https://github.com/DHaylock/ofxOPC

c. ofxGui

d. ofxNetwork

Node JS Webserver dependencies:

1. NodeJS == 12.X

2. "ejs": "^2.5.6"

3. "express": "^4.15.2"

4. "body-parser": "1.19.0"

5. "http-server": "0.12.0"

6. "socket.io": "2.3.0"

7. "request": "^2.81.0"

8. "tape": "^4.7.0"

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://github.com/scanlime/fadecandy
https://github.com/DHaylock/ofxOPC

System Architecture (Hardware)

The hardware system architecture is comprised of two ESP8266 Arduinos, Mac Mini,

FadeCandy, Ultrasonic Distance Sensor and Neopixel LED Strips. The Arduinos are connected

to the Mac Mini via a USB cable. The FadeCandy is connected to the Mac Mini via a USB

Cable. The FadeCandy is connected to the NeoPixel LED Strips via 2 data wires. The changing

software stack caused the hardware change from the Raspberry Pi 4 to Mac Mini. The move

towards OpenFrameworks from Processing was because when the Raspberry Pi 4 was assumed

to be the final hardware I discovered Processing can not produce a microsecond delay which is

required to use the ultrasonic distance sensors. Those sensors were going to be connected to the

GPIO pins on the Raspberry Pi 4. Because of the inability to use them with Processing, this

resulted in the move towards using external Arduinos and sending that data over serial. The

Raspberry Pi 4 was replaced by the Mac Mini due to complications that arose in compiling

OpenFrameworks on Debian Buster for the Raspberry Pi 4. Also, having the ultrasonic distance

sensor data parsed externally frees up resources on the Mac Mini and allows future input from

multiple sensors on one Arduino. The FadeCandy is used to control the lights because they

require a specific data timing that the Raspberry Pi 4 could not meet (the Mac Mini does not

have GPIO pins), and it allows easy control of NeoPixel LEDs. Using a desktop system allows

using a screen to show how data inputs are parsed into physical outputs: the LEDs.

System Architecture (Hardware-wiring)

The power for the LED strips is supplied via a 5-volt 12-amp power supply then split into

parallel lines supplying power to the individual led strips. The LED strips are individually wired

to the FadeCandy as well. I wired female JST SM connectors to the FadeCandy and created a

male-to-male JST SM 6-foot extension cable for each led strip, with one end plugging into the

Fade Candy and the other end the LED strips. The power leads for the LEDs were also extended

but due to the potential 3.6 amp draw of an individual LED strip I could not use the JST SM

connector because they are rated for a max amperage of 3 amps, and the LED strips have the

potential to draw 3.6 amps.17 The Fade Candy connects to the Mac Mini via a mini-USB cable.

One ESP8266 connects to the Mac Mini via a micro-USB cable, and the other via a USB to TTL

Serial Cable. The distance sensors are connected to the ESP8266s via 4 wires, 2 for power and 2

for data.

17 “SM Connector.” JST SM Connector. Adafruit. Accessed December 5, 2019. https://cdn-

shop.adafruit.com/datasheets/JSTSM.pdf.

System Architecture (Software - Data High Level Overview)

The software system architecture is comprised of Arduino C++ code, and OpenFrameworks C++

code. The Arduino code is used to control the specific timings of the distance sensors and reduce

the computation time done by the main OpenFrameworks program. The OpenFrameworks

library is used to easily create graphics from the serial bus data. Using OpenFrameworks allows

access to a large Addon community. This allows me to use a similar package, OPC library,

created by David Haylock, and in this application modified by me, Edward Deaver.

System Architecture (Software - OpenFrameworks Update Function)

The update function is where data is updated in the OpenFrameworks framework. The

application first runs the OPC update function which resets errors and timer data. Next, an if

statement checks if serial1 is available, if it is listenToSerial1(dataDivisionAmount) is ran and

newx1 is set to its value. dataDivisionAmount is used to scale data for the screen, it is currently

set to 1. Then, if serial2 is available it will run listenToSerial2(dataDivisionAmount) and newx2

is set to its value. Then resetTimeAndSpace(60*numberOfMinutesTillReset) is ran to check if

the program has been running for 60 minutes. If it has it clears the screen, and resets its timer.

Then, audioPlayBackAtPoint(newx1, true) and audioPlayBackAtPoint(newx2, false) are called

to produce sounds for a given range. If the second value is true it plays audio for the left audio

channel, if it is false, it plays audio for the right channel audio. After that

DrawLinearSquares(newx1,0, topSquareHeight, true) and DrawLinearSquares(newx2,0,

topSquareHeight, false) are called. The last value determines it draws rectangles for the left or

right led strips, true is for the left side and false is for the right side. Then OPC EndStage is ran

which reads the pixel values from the screen into an external frame buffer the OPC library

creates. Then OPC Client writes that pixel data to different lighting channels. Then, the app runs

ofSoundUpdate() which is an OpenFrameworks internal function that updates the sound engine.

Next, if 10 seconds has passed the application will call sendToUDP, to send the sensor data.

System Architecture (Software - Python UDP Server)

The Python application creates a UDP socket on the localhost. It continuously is listening for a

message. Once it receives a message it creates a json formatted string of the data with the secret

key inside it. Then it sends a post request to the Heroku server. The key will need be encrypted

using AES in the future, and input validates. Then the loop goes back to the top of the while

loop. Input

System Architecture (Software - NodeJS Web Server)

The NodeJS Express web server, hosts the post request endpoint and the Socket IO server. This

description will focus on the post request endpoint. When the server receives a post request on

the /sendsensorsata endpoint it will first establish local boolean variables for the status of each of

the validation methods for sensor and secret variables. The secret is validated to see if it matches

with the one stored as a NodeJS environment variable. If it doesn’t match it’s associated boolean

value is set to false, and the connection is ended. If it does match its boolean value is set to true,

and sensor 1 is checked if it is not undefined and is a number. If its value fails, its boolean value

is set to false and the connection is ended. This process is the same for sensor2. If all three

boolean values are true, then the sensor data is emitted from the socket io server. The post

function also has a function to end the connection outside of all the if statements.

Network Architecture (Dataflow)

The OPC library creates a socket connection to the FadeCandy server in order to tell the

FadeCandy board what to do. My application creates a UDP Socket to a Python UDP server to

get the data from openFrameworks to the outside world. I am using a UDP socket instead of a

TCP implementation due to the potential TCP will slow my application down if packets are

dropped. Due to the nature of this data, it is not of high value so it is not an issue if some data

points are lost. The Python server then sends the NodeJS server a Post request. Once the NodeJS

validates the incoming data it will emit that to the web client over a Socket IO connection.

Network Architecture (Messages)

The application uses JSON formatted messages to communicate with every part of the system

except the FadeCandy server which the OPC library sends messages using the OPC protocol.

The message from the OpenFrameworks application to the UDP Server is:

● {“sensor1”: Float, “sensor2”: Float, “timesent”: SystemTimeInMillisSeconds }

The message from the UDP Server to the NodeJS server:

● { "sensor1": Float , "sensor2": Float, "secret": SECRETVALUE}'

The message from the NodeJS server to the SocketIO client:

● {“sensor1”: Float, “sensor2”: Float}

Folder Structure (openFrameworks)

OpenFrameworks Folder Structure:

■ OpenFrameworks Root

➢ Addons

➢ Apps

■ myApps

● PublicInstallationProject

◆ Src

➢ main.cpp

➢ ofApp.cpp

➢ ofApp.h

◆ Bin

➢ Data

■ OpenSans-Bold.ttf

■ tone83.mp3

■ tone130.mp3

■ tone174.mp3

■ tone261.mp3

➢ PublicInstallationProjectDebug.app

➢ Docs

➢ Examples

➢ Libs

➢ Other

➢ Scripts

Folder Structure (Python)

OpenFrameworks Folder Structure:

■ Python UDP Server

➢ Requirements.txt

➢ UDPSERVER.py

Folder Structure (NodeJS)

NodeJS Folder Structure:

❖ NodeJS Root:

■ app.json

■ Index.js

■ > node_modules (folder)

■ package-lock.json

■ package.json

■ Procfile

■ > public (folder)

■ README.md

■ Test.js

■ > views (folder)

File Descriptions

Application:

Pre-condition: fcserver is currently running, and UDPSERVER.py is running.

FILE: ofApp.h

Description: Intialitizes the variables and classes for the project that are used in the ofApp class.

The variables and classes are separated into a public and private scope.

FILE: ofApp.cpp

Description: This runs the application. All data processing goes on here.

FILE: main.cpp

Description: Main method to run the app in ofApp.cpp.

FILE: ofxOPC.cpp

Description: OPC object supplied in ofxOPC library. I modified it to allow the stage

background to be reset or held. Also, I added a string value to set the file path for the font used in

the file.

FILE: ReadingInDataFromUltraSonic.ino(Arduino):

Description: This reads the distance of data from the ultrasonic distance sensor and prints it over

serial. The sent data is an average of 30 readings. The board is an Adafruit HUZZAH ESP8266

Breakout. It operates at 3.3v opposed to the Arduino Uno’s 5v.

FILE: UDPSERVER.py:

Description: This creates a UDP socket server on the localhost. When messages are received it

sends a json formatted post request to the NodeJS server.

FILE: index.js (NodeJS webserver):

Description: This reads serves the project webpage via an Express web server. It also hosts a

post request endpoint in which it validates the sensor data inputted, and if it is valid emits it over

a socket io connection.

Function Descriptions

FILE: ofApp.cpp

Function: setup()

Description: This sets the variables for the ofApp class. Also, the setup function connects to and

establishes the structure of LEDs.

Pre-conditions:

● The function requires the setup function to be declared public in ofApp.h.

● numberOfStrips, movement, lastTime, BackgroundHold, numberOfMinutesTillReset,

bSendSerialMessage, nTimesRead, nBytesRead, readTime, hasItRan are declared as a

public variable in ofApp.h

 Post-conditions:

● Serial1 and Serial2 are created. A GUI window is created.

Function: audioToneSetup()

Description: Loads and sets all ofSound objects for program.

Pre-conditions:

● The sound objects have been created.

Post-condition:

● All data values set. Returns true.

Function: setupOPCLeds(string IPAddress, int port, int stageWidth, int stageHeight, int

numberOfStrips, int numberOfLEDS)

Description: Creates NeoPixel objects for each led strip.

Pre-conditions:

● IPAddress is a string.

● port, stageWidth, stageHeight, numberOfStrips, and numberOfLEDS are ints.

● OPCClient is connected.

 Post-conditions:

● The LEDS strips are created.

Function Descriptions

FILE: ofApp.cpp

Function: update()

Description: Ingests serial data, runs graphics effects, and sends data to OPC Client. Note that

unlike setup, update is run in a loop by the OpenFrameworks library.

Pre-conditions:

● opcClient is connected successfully.

 Post-conditions:

● Post-conditions: Data is successfully sent to FadeCandy Server on different channels.

Function: draw()

Description: Draws things to the stage(normally). In this case will draw sensor information and

led strips.

Pre-conditions:

● opcClient is successfully connected.

● A GUI window has been created.

● LED strips have been generated.

 Post-conditions:

● Sensor data is drawn to the window successfully.

Function: keyPressed(int key)

Description: This is an event listener in OpenFrameworks that listens for a key press. This is not

used in this application but without it the program fails to compile.

Function: audioOut(ofSoundBuffer &outBuffer)

Description: This is an event listener in OpenFrameworks that listens for changes in audio.

Function: keyReleased(int key)

Description: This is an event listener in OpenFrameworks that listens for a key press. This is not

used in this application but without it the program fails to compile.

Function Descriptions

FILE: ofApp.cpp

Function: exit()

Description: Exits the program and closes connection to fcserver.

Pre-conditions:

● The program is running.

● opcClient is connected to the fcserver.

 Post-conditions:

● Application stops running.

Function: resetTimeAndSpace(int secondsToWaitFor)

Description: Reset on screen data by wiping the screen with a rectangle, resets the line object,

and resets the timer.

Pre-conditions:

● secondsToWaitFor is an int.

● ofGetElapsedTimef started running at the beginning of the program.

 Post-conditions:

● Elapsed time counter is reset.

● Screen is reset.

Function: DrawLinearSquares(int input1, int input2, float topSquareHeight, bool left)

Description: Draws more squares on screen as the user gets closer. If left is true it draws

rectangles on the left side of the screen, if false it draws rectangles on the right side of the screen.

Pre-conditions:

● input1, input2 is an int.

● topSquareHeight is a float.

● Left is either true or false.

 Post-conditions:

● None.

Function Descriptions

FILE: ofApp.cpp

Function: audioPlayBackAtPoint(float input, bool left)

Description: Changes volume for audio being played given the input and range. If left is true

plays audio for left side. If false, plays for right side

Pre-conditions: The sound objects have been created and set.

Post-conditions: A given volume is set.

Function: DrawSquares(int x)

FUNCTION CUT FROM FINAL BUILD

Description: This uses time to control the coloring of rectangles.

Pre-conditions:

● x is an int.

 Post-conditions:

● None.

Function: DrawMeteors(float x1, float x2)

FUNCTION CUT FROM FINAL BUILD

Description: Draws squares that persist on screen that are set at the user input of x1/x2.

Pre-conditions:

● x1/x2 are floats.

● line variable has been created.

 Post-conditions:

● None.

Function: listenToSerial1(int divisionAmount)

Description: Listens for input on serial input 1.

Pre-conditions:

● serial1 has been initialized.

● newx1 has been declared a global variable.

● divisionAmount is an int.

 Post-conditions:

● newx1 is returned as a float.

Function Descriptions

FILE: ofApp.cpp

Function: listenToSerial2(int divisionAmount)

Description: Listens for input on serial input 2.

Pre-conditions:

● serial2 has been initialized.

● newx2 has been declared a global variable.

● divisionAmount is an int.

 Post-conditions:

● newx2 is returned as a float.

Function Descriptions

FILE: ofxOPC.cpp (Modified)

Function: beginStage(bool hasItRan)

Description: Sets the stage of the leds and begins ofFbo object(second frame buffer that can be

written to).

Pre-conditions:

● hasItRan is a boolean

● screenCapture has been declared.

 Post-conditions:

● The LEDS strips are created.

Function Descriptions

FILE: UDPServer.py

Function: The file is one function.

Description: Creates UDP Socket server and sends json post request to the NodeJS server.

Pre-conditions:

● None.

 Post-conditions:

● None.

Function Descriptions

FILE: index.js

Function: post("/sendsensorsata", function(request, response)

Description: Creates a Post request end point for data. The data sent in is then verified. If

successfully verified it is sent to the socket io client.

Pre-conditions: NodeJS has the key stored as an environment variable.

Post-conditions: Connection is closed.

Function: checkSecret(secretSent)

Description: Validates the secret key. Checks if environment variable is like the one sent by the

server

Pre-conditions: Environment variable set.

Post-conditions: Returns true or false.

Function: checkSensor(sensorData)

Description: Validates Sensor Data. Checks if it is undefined, and a number.

Pre-conditions: None.

Post-conditions: Returns true or false.

Testing

Test 1: How will drawing to the screen without reset effect Frames Per Second?

Outcome: This led to the creation of the resetSpaceAndTime function.

Input Expected Results Actual Results

The program ran the

drawMeteor function on a

Mac Mini for 36 hours.

The program would freeze the

machine.

The program dropped from its

initial 30 FPS to 20 FPS and

still received input from the

Arduino devices.

Test 2: Accuracy rate of ultrasonic sensors.

Outcome: 10+- cm accuracy achieved with 30 millisecond delay per reading and returning an

average of 30 readings. Each reading costs 30 milliseconds plus 12 microseconds, 0.030012

seconds. An average result in a time cost of 0.90036 seconds. Unfortunately, this still results in

some number jumps which could be fixed by using a “time of flight” sensor.

Input Expected Results Actual Results

Gave a standard distance and

changed the values of average

amount and delay.

The data output would be

accurate but not take as long.

The data was still in accurate

at times.

Test 3: Categories range in DrawLinearSquares

Outcome: Due to the inaccuracies in the sensor direct control using the sensor data was cut.

Now the effect uses large categories to try to catch data values when they adjust.

Input Expected Results Actual Results

Input sensor data

drawLinearEffect and try to

directly control the amount of

squares on screen.

The program would produce a

smooth effect.

The resulting effect was

incredibly jumpy and at times

almost strobing. This resulted

in creating categories to

capture the distance sensor

even if it was not super

accurate.

Test 4: Audio generation quality.

Note: Originally the program used the audio out function to generate audio in real time.

This was cut due to its outcome.

Outcome: When the global variable frequency was modified to be higher values than 83 by the

drawLinearSquares effect it would create a sin wave that made the audio start to clip. Clipping is

when our audio’s waveform hits the max volume when the rest of the wave remains under max

volume. In OpenFrameworks audio volume is 0 to 1.

Input Expected Results Actual Results

Modified newx1, and newx2

values to count down from

3000. Newx1 = Newx1-2.

Newx2 = Newx2 -1.

The program would

flawlessly generate tones.

The audio clipped and created

a very unpleasant experience.

Test 5: Audio playback error when input data jumps around.

Note: The audio playback can have issues when the input data jumps very quickly from one

extreme to another. I fixed attempted to fix the bug by making sure if any category of audio was

played the function immediately ran return to end the function. I also made sure any values

outside the desired ranges had no way of playing audio.

Outcome: Using the if statement I made that would rate limit my UDP data transmission I set

newx1 and newx2 to be random values with a max of 14000. I also decreased the rate limit from

its original 10 second interval to 0.5 seconds. The 14000 max is a number that the sensors have

produced and is one that is not within the categories ranges that make sound.

Input Expected Results Actual Results

Using the if statement I made

that would rate limit my UDP

data transmission I set newx1

and newx2 to be random

values with a max of 14000.

That value was changed every

0.5 seconds.

The audio should only play

when in a defined range.

The audio failed to produce

any errors and now works as

intended.

Test 6: Does NodeJS reject a connection with a wrong secret key?

Outcome: When sending a json request using curl to the Heroku server with valid sensor 1 and 2

data but a malformed secret key the connection was closed.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct except the

secret key.

The server should close the

connection and it immediately

should end.

The connection immediately

closed.

Test 7: Does NodeJS reject a connection with a non-number sensor1?

Outcome: When sending a json request using curl to the Heroku server with valid sensor 2 and

secret data but a non-number sensor 1 the connection was closed.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct except a

non-number sensor 1.

The server should close the

connection and it immediately

should end.

The connection immediately

closed.

Test 8: Does NodeJS reject a connection with an undefined sensor1?

Outcome: When sending a json request using curl to the Heroku server with valid sensor 2 and

secret data but an undefined sensor 1 the connection was closed. The server sent back a web page

stating there was an error as well “Bad Request”. It did not accept the given inputs, so from that

perspective it was a success. This is still unexpected behavior due to the error webpage being

returned.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct except an

undefined sensor 1.

The server should close the

connection and it immediately

should end.

The server sent back an error

page. It did not accept the

given inputs, so from that

perspective it was a success.

This is unexpected behavior

that will need to be addressed.

Test 7: Does NodeJS reject a connection with a non-number sensor2?

Outcome: When sending a json request using curl to the Heroku server with valid sensor 1 and

secret data but a non-number sensor 2 the connection was closed.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct except a

non-number sensor 2.

The server should close the

connection and it immediately

should end.

The connection immediately

closed.

Test 8: Does NodeJS reject a connection with an undefined sensor2?

Outcome: When sending a json request using curl to the Heroku server with valid sensor 1 and

secret data but an undefined sensor 2 the connection was closed. The server sent back a web page

stating there was an error as well “Bad Request”. It did not accept the given inputs, so from that

perspective it was a success. This is still unexpected behavior due to the error webpage being

returned.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct except an

undefined sensor 2.

The server should close the

connection and it immediately

should end.

The server sent back an error

page. It did not accept the

given inputs, so from that

perspective it was a success.

This is unexpected behavior

that will need to be addressed.

Test 8: Does NodeJS accept a connection with all valid inputs?

Outcome: When sending a json request using curl to the Heroku server with all valid data It

showed the data on the webpage.

Input Expected Results Actual Results

Using Curl to make sure my

json requests were correct. I

formatted a json request to the

Heroku server that had

everything correct.

The data should be shown on

the website.

The data values were shown

on the webpage.

Real Clear Information Definitions

1. Motion detector:

a. This allows the Arduino to tell how close you are. This is like motion detectors on

garage lights.

2. Arduino:

a. These are “microcontrollers”. They are told to do one thing and they do it forever.

They’re like your cell phone but they only run 1 app.

3. Computer:

a. “When you program, or code, you provide instructions for the computer to follow.

Many programmers write code in text, meaning that they type it out on the

keyboard.”18. On the computer a program is running that listens for the Arduinos

to say something. It then draws its response on the computer screen and tells the

lights to light up.

4. FadeCandy:

a. This tells the lights which individual lights to light up and what color.

18 Google, “CS First Get Started Guide”.
https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit

https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit

Bibliography

 ACLU, “How to Stop ‘Smart Cities’ From Becoming ‘Surveillance Cities’”.

https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-

cities-becoming-surveillance-cities

 “Ad Council.” AdCouncil. Accessed December 4, 2019. https://www.adcouncil.org/.

 “Code.gov.” Code.gov. Accessed December 4, 2019. https://code.gov/.

 Cysneiros, Luiz Marcio, and Vera Maria Benjamim Werneck. "An Initial Analysis on How

Software Transparency and Trust Influence each other." In WER.

2009.http://www.inf.puc-rio.br/~wer/WERpapers/artigos/artigos_WER09/cysneiros.pdf

 Fishman, Marina. “How to Do Radical Transparency Right as a Manager.” Copper.

Copper, August 20, 2019. https://www.copper.com/blog/radical-transparency.

 Google, “CS First Get Started Guide”.

https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpn

wyVNlp-o/edit

 Grimmelikhuijsen, Stephan. (2010). Transparency of Public Decision-Making: Towards

Trust in Local Government?. Policy & Internet. 2. 10.2202/1944-2866.1024.

 Grimmelikhuijsen, Stephan. (2012). Linking Transparency, Knowledge and Citizen

Trust in Government: An Experiment. International Review of Administrative Sciences -

INT REV ADM SCI. 78. 50-73. 10.1177/0020852311429667.

 “Let's Do This!” Let's Do This! | DoSomething.org. Accessed December 4, 2019.

https://www.dosomething.org/us.

 “Node.js Web Application Framework.” Express, December 4, 2019.

https://expressjs.com/.

 Sam, Edelstein. Interview by Edward Deaver. Personal interview. Syracuse,December 3,

2019.

 Scanlime. “Scanlime/Fadecandy.” GitHub, January 6, 2019.

https://github.com/scanlime/fadecandy.

https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://www.aclu.org/blog/privacy-technology/surveillance-technologies/how-stop-smart-cities-becoming-surveillance-cities
https://code.gov/
http://www.inf.puc-rio.br/~wer/WERpapers/artigos/artigos_WER09/cysneiros.pdf
https://www.copper.com/blog/radical-transparency
https://www.copper.com/blog/radical-transparency
https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit
https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit
https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit
https://docs.google.com/document/d/1LHJnxZBPxJXhrWPvnwy5N00T7D59MvVFSpnwyVNlp-o/edit
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/

 “Processing.” Visualising Information for Advocacy. Accessed December 1, 2019.

https://visualisingadvocacy.org/node/725.html.

 “SM Connector.” JST SM Connector. Adafruit. Accessed December 5, 2019. https://cdn-

shop.adafruit.com/datasheets/JSTSM.pdf.

 “What Is Open Source?” Opensource.com. Accessed December 4, 2019.

https://opensource.com/resources/what-open-source.

 Wolff, Martijn, and W E Biernatzki. “The Social and Cultural Effects of Advertising .”

Communication Research Trends 14, no. 1 (1994): 34–34.

http://cscc.scu.edu/trends/v14/V14_1.pdf.

https://cdn-shop.adafruit.com/datasheets/JSTSM.pdf
https://cdn-shop.adafruit.com/datasheets/JSTSM.pdf
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
http://cscc.scu.edu/trends/v14/V14_1.pdf
http://cscc.scu.edu/trends/v14/V14_1.pdf
http://cscc.scu.edu/trends/v14/V14_1.pdf

